Wnt5a/FZD5/CaMKII signaling pathway mediates the effect of BML-111 on inflammatory reactions in sepsis.

نویسندگان

  • Muhu Chen
  • Wu Zhong
  • Yingchun Hu
  • Jitao Liu
  • Xianfu Cai
چکیده

AIMS This study aims to investigate the effect of 5(S), 6(R)-7-trihydroxymethyl heptanoate (BML-111) on the Wnt5a/frizzled-5 (FZD5)/calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathway in septic mice, and to explore whether this pathway mediates the effect of BML-111 on inflammatory response in lipopolysaccharide (LPS)-induced RAW 264.7 cells. METHODS The cecal ligation and puncture-induced mouse model of sepsis was constructed, and the mice were pretreated with BML-111. In vitro, LPS-induced RAW 264.7 cells were incubated with various concentrations of BML-111. Activation of Wnt5a/FZD5/CaMKII signaling pathway was achieved by transfection of the Wnt5a overexpression plasmid. The levels of interleukin-1 beta (IL-1β), IL-6 and IL-8 in the mouse serum and cell supernatant were determined by ELISA assay. The expression of Wnt5a, FZD5 and CaMKIIδ was examined by western blot analysis. RESULTS The results from the in vivo studies revealed that BML-111 shows inhibitory effect on IL-1β, IL-6 and IL-8 expression in the serum of septic mice, and suppresses the expression of Wnt5a, FZD5 and CaMKIIδ protein. The in vitro studies demonstrated that BML-111 inhibits Wnt5a, FZD5 and CaMKIIδ proteins in a dose-dependent manner. BML-111 suppressed the levels of IL-1β, IL-6 and IL-8 in LPS-induced RAW 264.7 cells; however, this effect could be attenuated by transfection of the Wnt5a overexpression plasmid. CONCLUSION This study firstly demonstrated that BML-111 suppresses Wnt5a/FZD5/CaMKII signaling pathway in sepsis, and Wnt5a/FZD5/CaMKII signaling pathway mediates the effect of BML-111 on inflammatory reactions. These findings provided a novel molecular basis for the potential effect of BML-111 in sepsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct Patterns of Wnt3a and Wnt5a Signaling Pathway in the Lung from Rats with Endotoxic Shock

Septic shock is a syndrome with severe hypotension and multiple organ dysfunction caused by an imbalance between pro-inflammatory and anti-inflammatory response. The most common risk factor of acute lung injury is severe sepsis. Patients with sepsis-related acute respiratory distress syndrome have higher mortality. Recent studies reveal regulatory roles of Wnt3a and Wnt5a signaling in inflammat...

متن کامل

Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10.

OBJECTIVE Sepsis is a major cause of death for intensive care patients. High concentrations of inflammatory cytokines are characteristic of severe systemic inflammation and activated monocytes are their predominant cellular source. To identify targets for antiinflammatory intervention, we investigated the response of human macrophages to inflammatory and antiinflammatory mediators. METHODS AN...

متن کامل

The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation.

Microarray--assisted gene--expression screens of human macrophages revealed WNT5A, a homolog of Wingless, a key regulator of Drosophila melanogaster embryonic segmentation and patterning, to be consistently up-regulated following stimulation with different mycobacterial species and conserved bacterial structures. The expression of WNT5A required Toll-like receptor signaling and NF-kappaB activa...

متن کامل

Abstract. 5(S),6(R)-7-trihydroxymethyl heptanoate (BML-111) is an lipoxin A4 receptor agonist, which modulates the immune response and attenuates hemorrhagic shock-induced acute lung injury. However, the role of BML-111 in sepsis

5(S),6(R)-7-trihydroxymethyl heptanoate (BML-111) is an lipoxin A4 receptor agonist, which modulates the immune response and attenuates hemorrhagic shock-induced acute lung injury. However, the role of BML-111 in sepsis and in the intestinal mucosal barrier are not well understood. Therefore, the present study was designed to investigate the effect of BML-111 on the intestinal mucosal barrier i...

متن کامل

WNT5A transforms intestinal CD8αα+ IELs into an unconventional phenotype with pro-inflammatory features

BACKGROUND Intestinal intraepithelial lymphocytes that reside within the epithelium of the intestine form one of the main branches of the immune system. A majority of IELs express CD8α homodimer together with other molecules associated with immune regulation. Growing evidence points to the WNT signaling pathway as a pivotal piece in the immune balance and focuses on its direct regulation in int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of clinical and experimental medicine

دوره 8 10  شماره 

صفحات  -

تاریخ انتشار 2015